Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Continuous symmetries lead to universal slow relaxation of correlation functions in quantum many-body systems. In this work, we study how local symmetry-breaking impurities affect the dynamics of these correlation functions using Brownian quantum circuits, which we expect to apply to generic non-integrable systems with the same symmetries. While explicitly breaking the symmetry is generally expected to lead to eventual restoration of full ergodicity, we find that approximately conserved quantities that survive under such circumstances can still induce slow relaxation. This can be understood using a super-Hamiltonian formulation, where low-lying excitations determine the late-time dynamics and exact ground states correspond to conserved quantities. We show that in one dimension, symmetry-breaking impurities modify diffusive and subdiffusive behaviors associated with U(1) and dipole conservation at late-times, e.g., by increasing power-law decay exponents of the decay of autocorrelation functions. This stems from the fact that for these symmetries, impurities are relevant in the renormalization group sense, e.g., bulk impurities effectively disconnect the system, completely modifying both temporal and spatial correlations. On the other hand, for an impurity that disrupts strong Hilbert space fragmentation, the super-Hamiltonian only acquires an exponentially small gap, leading to prethermal plateaus in autocorrelation functions which extend for times that scale exponentially with the distance to the impurity. Overall, our approach systematically characterizes how symmetry-breaking impurities affect relaxation dynamics in symmetric systems.more » « lessFree, publicly-accessible full text available May 21, 2026
-
The realization of synthetic gauge fields for charge neutral ultracold atoms and the simulation of quantum Hall physics have witnessed remarkable experimental progress. Here, we establish key signatures of fractional quantum Hall systems in their nonequilibrium quantum dynamics. We show that in the lowest Landau level the system generically relaxes subdiffusively. The slow relaxation is understood from emergent conservation laws of the total charge and the associated dipole moment that arises from the effective Hamiltonian projected onto the lowest Landau level, leading to subdiffusive fracton hydrodynamics. We discuss the prospect of rotating quantum gases as well as ultracold atoms in optical lattices for observing this unconventional relaxation dynamics.more » « lessFree, publicly-accessible full text available April 1, 2026
An official website of the United States government
